Conditions for Existence of Dual Certificates in Rank-One Semidefinite Problems
نویسنده
چکیده
Several signal recovery tasks can be relaxed into semidefinite programs with rank-one minimizers. A common technique for proving these programs succeed is to construct a dual certificate. Unfortunately, dual certificates may not exist under some formulations of semidefinite programs. In order to put problems into a form where dual certificate arguments are possible, it is important to develop conditions under which the certificates exist. In this paper, we provide an example where dual certificates do not exist. We then present a completeness condition under which they are guaranteed to exist. For programs that do not satisfy the completeness condition, we present a completion process which produces an equivalent program that does satisfy the condition. The important message of this paper is that dual certificates may not exist for semidefinite programs that involve orthogonal measurements with respect to positivesemidefinite matrices. Such measurements can interact with the positive-semidefinite constraint in a way that implies additional linear measurements. If these additional measurements are not included in the problem formulation, then dual certificates may fail to exist. As an illustration, we present a semidefinite relaxation for the task of finding the sparsest element in a subspace. One formulation of this program does not admit dual certificates. The completion process produces an equivalent formulation which does admit dual certificates.
منابع مشابه
An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA Recurrent Neural Network Model for Solving Linear Semidefinite Programming
In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...
متن کاملPreprocessing and Regularization for Degenerate Semidefinite Programs
This paper presents a backward stable preprocessing technique for (nearly) ill-posed semidef5 inite programming, SDP, problems, i.e., programs for which the Slater constraint qualification, 6 existence of strictly feasible points, (nearly) fails. 7 Current popular algorithms for semidefinite programming rely on primal-dual interior-point, 8 p-d i-p methods. These algorithms require the Slater c...
متن کاملRank-one solutions for homogeneous linear matrix equations over the positive semidefinite cone
The problem of finding a rank-one solution to a system of linear matrix equations arises from many practical applications. Given a system of linear matrix equations, however, such a low-rank solution does not always exist. In this paper, we aim at developing some sufficient conditions for the existence of a rank-one solution to the system of homogeneous linear matrix equations (HLME) over the p...
متن کاملPreprocessing and Reduction for Degenerate Semidefinite Programs
4 This paper presents a backward stable preprocessing technique for (nearly) ill-posed semidef5 inite programming, SDP, problems, i.e., programs for which Slater’s constraint qualification, 6 existence of strictly feasible points, (nearly) fails. 7 Current popular algorithms for semidefinite programming rely on primal-dual interior-point, 8 p-d i-p methods. These algorithms require Slater’s con...
متن کامل